Lithography Tool Package

6. Process effects and real life process examples

Thomas Anhøj

DTU Danchip
National Center for Micro- and Nanofabrication
Outline

1. Introduction
 - Process steps in UV lithography

2. Spin coating
 - Resist composition
 - Pre-treatment
 - Principle
 - Softbake
 - Spin curve

3. Exposure
 - Hardware
 - Process parameters
 - Resolution
 - Alignment

4. Development
 - Principle
 - Effects
 - Resist tone, photo-chemistry, and contrast

5. Post-processing and characterization
 - Post processing
 - Characterization methods

6. Process effects and examples
 - Process effects
 - Real life process examples
Processing: effects

- The following slides shows simplified, exaggerated representations of top-view and cross-section inspection of resist patterns, for a square design, tens of µm in size
- Effects of exposure mode, exposure dose, and development time are shown, first for positive tone resist, then for negative tone resist
- Some effects are also illustrated by OM inspections of a real life process

- Inspection example (bright field design, optimal conditions):

<table>
<thead>
<tr>
<th>Mask</th>
<th>Positive tone</th>
<th>Negative tone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Positive tone resist: exposure mode

<table>
<thead>
<tr>
<th>Mask</th>
<th>Contact</th>
<th>Proximity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark field</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Positive tone resist: exposure dose

<table>
<thead>
<tr>
<th>Mask</th>
<th>Under-exposed</th>
<th>Over-exposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark field</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bright field
- Under-exposed: A completely exposed area.
- Over-exposed: A partially exposed area.

Dark field
- Under-exposed: A completely unexposed area.
- Over-exposed: A partially unexposed area.
Positive tone resist: development time

<table>
<thead>
<tr>
<th>Mask</th>
<th>Under-developed</th>
<th>Over-developed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark field</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AZ 5214E: real life process flow

<table>
<thead>
<tr>
<th>Step Header</th>
<th>Equipment</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Spin coat of AZ 5214E with HMDS priming</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1.1 Coat wafers | Spin Coater: Gamma UV | Resist: AZ 5214E (line 3)
Spin: 30 s @ 4500 rpm (~1.5 µm)
Softbake: 60 s @ 90 °C
Sequence: DCH 100mm 5214E 1.5um HMDS
Si substrate
HMDS priming: 15 s @ 120°C |
| 2 Exposure | | |
| 2.1 Expose | Aligner: MA6 – 2 | Mask: Litho test
Exposure mode: Hard contact
Exposure dose: 72 mJ/cm²
HC wait time: 10 s
Exposure time: 5.5 s @ 13 mW/cm² |
| 3 Development | | |
| 3.1 Develop | Developer: TMAH UV-lithography | Development in AZ 726 MIF: single puddle, 60 s
Sequence:
DCH 100mm SP 60s |
| 4 Inspection | | |
| 4.1 Inspection | Optical microscope | Inspect: Line and dot patterns, bright field and dark field, using 20X objective |
AZ 5214E: exposure mode

Mask

Contact

Proximity (~2µm)

1.5µm 5214E, Hard contact, 72mJ/cm², 60s TMAH puddle
AZ 5214E: process window

Mask

Under-exposure (20%)

Under-development (50%)

Optimal

Over-exposure (50%)

Dark erosion <10nm

Over-development (100%)

1.5µm 5214E, Hard contact, 72mJ/cm², 60s TMAH puddle
Exercise: What went wrong?

1.5µm MiR 701, Hard contact, 169mJ/cm², PEB 60s @ 110°C, 60s TMAH puddle
Exercise: a clue...

Dirty mask!

Solution: clean mask and re-work

Immediate solution: try vacuum contact

1.5μm MiR 701, Vacuum contact, 169mJ/cm², PEB 60s @ 110°C, 60s TMAH puddle
Negative tone resist: exposure mode

<table>
<thead>
<tr>
<th>Mask</th>
<th>Contact</th>
<th>Proximity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark field</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Negative tone resist: exposure dose

<table>
<thead>
<tr>
<th>Mask</th>
<th>Under-exposed</th>
<th>Over-exposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark field</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Negative tone resist: development time

<table>
<thead>
<tr>
<th>Mask</th>
<th>Under-developed</th>
<th>Over-developed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright field</td>
<td>![Under-developed]</td>
<td>![Over-developed]</td>
</tr>
<tr>
<td>Dark field</td>
<td>![Under-developed]</td>
<td>![Over-developed]</td>
</tr>
</tbody>
</table>
AZ nLOF 2020: real life process flow

Step 1: Spin coat of AZ nLOF 2020 with HMDS priming

<table>
<thead>
<tr>
<th>Step</th>
<th>Header</th>
<th>Equipment</th>
<th>Comments</th>
</tr>
</thead>
</table>
| 1.1 | Coat wafers | Spin Track 1 + 2 | Resist: AZ nLOF 2020 (track 2)
Spin: 30 s @ 6700 rpm (~1.5 μm)
Softbake: 60 s @ 110 °C
Flow: T2 nLOF 2020 2um with HMDS |
| | | Spin Track 1 + 2 | Si substrate |
| | | Si substrate | HMDS priming: 72 s @ 50°C |

Step 2: UV Exposure

<table>
<thead>
<tr>
<th>Step</th>
<th>Header</th>
<th>Equipment</th>
<th>Comments</th>
</tr>
</thead>
</table>
| 2.1 | Exposure | Aligner: MA6 – 2 | Mask: Litho test
Exposure mode: Hard contact
Exposure dose: 104 mJ/cm² |
| | | | HC wait time: 10 s
Exposure time: 8.6 s @ 13 mW/cm² |

Step 3: Post Exposure Bake

<table>
<thead>
<tr>
<th>Step</th>
<th>Header</th>
<th>Equipment</th>
<th>Comments</th>
</tr>
</thead>
</table>
| 3.1 | Post Exposure Bake | Developer: TMAH UV-lithography | Post Exposure Bake: 60 s @ 110 °C
Sequence: DCH 100mm PEB60s@110C+SP30s |
| | | | PEB and development is done simultaneously |

Step 4: Development

<table>
<thead>
<tr>
<th>Step</th>
<th>Header</th>
<th>Equipment</th>
<th>Comments</th>
</tr>
</thead>
</table>
| 4.1 | Develop | Developer: TMAH UV-lithography | Development in AZ 726 MIF: single puddle, 30 s
Sequence: DCH 100mm PEB60s@110C+SP30s |
| | | | PEB and development is done simultaneously |

Step 5: Inspection

<table>
<thead>
<tr>
<th>Step</th>
<th>Header</th>
<th>Equipment</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Inspection</td>
<td>Optical microscope</td>
<td>Inspect: Line and dot patterns, bright field and dark field, using 20X objective</td>
</tr>
</tbody>
</table>
AZ nLOF 2020: exposure mode

1.5µm nLOF, Hard contact, 104mJ/cm², PEB 60s @ 110°C, 30s TMAH puddle
AZ nLOF 2020: process window

- Mask:
 - 4µm
 - 3µm
 - 2µm
 - 1µm

- Under-exposure (50%)
 - "Dark" erosion ~60nm

- Under-development (50%)
 - "Dark" erosion ~30nm
 - Sidewall angle ~15°

- Optimal
 - Sidewall angle ~5°

- Over-exposure (50%)
 - Over-development (100%)

1.5µm nLOF, Hard contact, 104mJ/cm², PEB 60s @ 110°C, 30s TMAH puddle
Processing effects: exercise

Consider a bright field design of two 30µm by 30µm squares corner to corner processed using a positive tone resist. Discuss in teams what process effect may have caused the result in A or B.

A

Proximity (~2µm)

Length = 29.75 µm

Length = 29.60 µm

B

Over-exposure (50%)

Length = 29.32 µm

Length = 29.24 µm
Processing effects: Newton’s rings

The dose is changed locally due to interference between light reflected by an air gap (of varying size) between mask and resist surface -probably due to a particle

Solution: increase exposure dose
Immediate solution: develop again

Process:
- 1.5 µm MiR 701
- Vacuum contact
- 156 mJ/cm²
- PEB 60 s @ 110°C
- 60 s TMAH puddle
Further reading

- MicroChemicals homepage
 - Downloads → Application notes
 - Notes on composition, processing, and use of photoresists
 - E.g. “Lithography Trouble-Shooter”

- LabAdviser
 - labadviser.danchip.dtu.dk
 - Information on machines, resists, and processes
 labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Lithography/UVLithography
 - E.g. “Information on UV Exposure Dose”
 labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Lithography/UVExposure_Dose
AZ MiR 701: real life process flow

<table>
<thead>
<tr>
<th>Step</th>
<th>Header</th>
<th>Equipment</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spin coat of AZ MiR 701 with HMDS priming</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1.1 | Coat wafers | Spin Track 1 + 2 | Resist: AZ MiR 701 (track 1)
Spin: 30 s @ 5000 rpm (~1.5 µm)
Softbake: 60 s @ 90 °C (1 mm proximity)
Flow: T1 MiR 701 1,5um with HMDS | Si substrate
HMDS priming: 72 s @ 50°C |
| 2 | UV Exposure | | |
| 2.1 | Exposure | Aligner: MA6 – 2 | Mask: Litho test
Exposure mode: Vacuum contact
Exposure dose: 169 mJ/cm² | Pre vac: 10 s; full vac: 10 s
Exposure time: 13 s @ 13 mW/cm² |
| 3 | Post Exposure Bake | Developer: TMAH UV-lithography | Post Exposure Bake: 60 s @ 110 °C
Sequences: DCH 100mm PEB60s@110C+SP60s | PEB and development is done simultaneously |
| 4 | Development | Developer: TMAH UV-lithography | Development in AZ 726 MIF: single puddle, 60s
Sequences: DCH 100mm PEB60s@110C+SP60s | PEB and development is done simultaneously |
| 5 | Inspection | Optical microscope | Inspect: Line and dot patterns, bright field and dark field, using 20X objective |
AZ MiR 701: exposure mode

<table>
<thead>
<tr>
<th>Mask</th>
<th>Contact</th>
<th>Proximity (~2µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4µm</td>
<td>1µm</td>
<td>1.5µm MiR, Vacuum contact, 169mJ/cm², PEB 60s @ 110°C, 60s TMAH puddle</td>
</tr>
<tr>
<td>3µm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2µm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1µm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1µm MiR, Vacuum contact, 169mJ/cm², PEB 60s @ 110°C, 60s TMAH puddle
AZ MiR 701: process window

1.5µm MiR, Vacuum contact, 169mJ/cm², PEB 60s @ 110°C, 60s TMAH puddle